### **Inspection and Test Report**

for Kollmorgen Lift Control MPK400/MPK411



# Initial Electrical Test of the Lift Control System by the Lift Installer in accordance with BS7671:2008

Steuerungstechnik GmbH Telefon: 0221/89850

Internet: www.Kollmorgen.de

### Please note:

The manufacturing process of the Kollmorgen control system includes a test procedure, which is carried out in accordance with VDE0660 Part 600 and incorporates elements of the initial electrical test as laid out in DIN VDE 0100 Part 600. The initial electrical test must only be carried out by an authorised and competent person as defined in BS7671:2008. Every control system must be tested on site throughout the installation and on completion. This inspection and test report is intended to help with the documentation of test results. Please complete and tick as required.

|        | Lift Details                          |                                           |                |                     | Date of the                 | Test:             |                        |            |        |  |  |  |
|--------|---------------------------------------|-------------------------------------------|----------------|---------------------|-----------------------------|-------------------|------------------------|------------|--------|--|--|--|
| Site I | Reference:                            | Co                                        | ntroller No.:  |                     | Year of Manufa              | cture:            |                        |            |        |  |  |  |
| Custo  | omer Lift Ref. No.:                   |                                           |                |                     | Groups                      | only: Lift        | No of                  |            |        |  |  |  |
| Lift C | `ampany                               |                                           |                |                     |                             |                   |                        |            |        |  |  |  |
| LIIL   | Company:                              |                                           |                |                     | Name of 1                   | ester             |                        |            | _      |  |  |  |
| 1      | General                               | (Record of Nominal Data)                  |                | Automatic Di        | sconnection of the          | Supply in a       | cc. with 4.3           | V          | 1      |  |  |  |
| _      |                                       | (necona en neconinal zata)                |                |                     |                             |                   |                        |            | ı      |  |  |  |
| 1.0    | Earthing System                       | ☐ TNC ☐ TNC-S                             | ☐ IT           | ПП                  | Trip Charact                | eristic           |                        |            |        |  |  |  |
|        | Overcurrent Protec                    | ctive Device / RCD / Insulation Mo        | n. Device      | Legende             | NH Z B                      | C gl              | Nominal / Trip         |            |        |  |  |  |
| 1.1    | Nominal / trip curr                   | ent: Power circuit                        |                | F1A-1C              |                             |                   | A /A                   | 7          | ]      |  |  |  |
| 1.2    | Nominal / trip curr                   | ent: Control circuit                      |                | F1                  |                             |                   | A /A                   | 1 [        | ]      |  |  |  |
| 1.3    | Nominal / trip curr                   | ent: Safety circuit                       |                | F3                  |                             |                   | A /A                   | 7          | ]      |  |  |  |
| 1.4    | Nominal / trip curr                   | ent: Lift car circuit                     |                | F90                 |                             |                   | 10A / 50A              | 7          | ]      |  |  |  |
| 1.5    | Nominal / trip curr                   | ent: Shaft & machine room circuit         |                | F99                 |                             |                   | A /A                   | <u>۱</u> [ | ]      |  |  |  |
| 1.6    | Nominal / trip curr                   | ent: Door operator 1 circuit              |                | F40A                |                             |                   | A /A                   | 7          | ]      |  |  |  |
| 1.7    | Nominal / trip curr                   | ent: Door operator 2 circuit              |                | F40B                |                             |                   | A /A                   | $\sqcup$   | j      |  |  |  |
| 1.8    | Nominal / trip curr                   | ent: Machine brake circuit                |                | F7                  |                             |                   | A /A                   | Ĭ          | j      |  |  |  |
| 1.9*   |                                       |                                           |                |                     |                             |                   | A /A                   | 7          | j      |  |  |  |
| 1.10*  |                                       |                                           |                |                     |                             |                   | A /A                   |            | j      |  |  |  |
|        | * = available for additio             | ns                                        |                | Typ Z = 3,5 x I-Nei | nn, Typ B = 5 x I-Nenn, Typ | C = 10 x I-Ner    | nn, Typ D = 15 x I-Nen | n *:       | 1      |  |  |  |
| 2      | Visual Inspection                     | (Inspection of the Complete Lift C        | Control System | n with Power [      | Disconnected)               | OK= ☑             | Commen                 | ts         |        |  |  |  |
| 2.0    | A visual inspection                   | of the control system does not sh         | ow any safet   | ty relevant iss     | sues:                       |                   |                        |            |        |  |  |  |
| 2.1    | Correct selection a                   | nd installation of components and         | d cable (insta | llation, fitting    | g, protection class         | , 🔲               |                        |            |        |  |  |  |
| 2.1    | protection against                    | direct contact, labelling and cable       | installation/  | termination)        | :                           |                   |                        |            |        |  |  |  |
| 2.2    | All screw terminals                   | and connections to components             | are correctly  | tightened fo        | llowing transport:          | : 🗆               |                        |            |        |  |  |  |
| 2.3    | Main isolator (labe                   | lling and lock-off facility present):     |                |                     |                             |                   |                        |            |        |  |  |  |
| 2.4    | Safe accessibility o                  | f switch gear (adequate space for         | hand operati   | ion):               |                             |                   |                        |            |        |  |  |  |
| 2.5    | Earthing conductor                    | r and connections: correct equipo         | tential bondi  | ng of all lift s    | ystem component             | ts:               |                        |            |        |  |  |  |
| 2.6    | Safety measures fo                    | or inverters: Protection of the inve      | rter supply c  | arried out in       | accordance with             |                   |                        |            |        |  |  |  |
| 2.6    | manufacturer's ins                    |                                           |                |                     |                             |                   |                        |            |        |  |  |  |
| 2.7    | SELV / PELV requir                    | ements fulfilled (and separate fro        | m other circu  | ıits):              |                             |                   |                        |            |        |  |  |  |
| 2.8    | Protective covers,                    | documentation, data plates and s          | afety notices  | are present:        |                             |                   |                        |            |        |  |  |  |
| 2.9    |                                       | tructions, warnings and safety rec        | uirements h    | ave been adh        | nered to:                   |                   |                        |            |        |  |  |  |
|        | Z <sub>S</sub> = Earth fault loop imp | pedance                                   |                |                     |                             |                   |                        |            |        |  |  |  |
| 3      | Checks                                | <u>↑</u> Follow                           | Manufacturer   | s' Instructions     |                             | ОК= 🗹             | Commen                 | ts         |        |  |  |  |
| 3.1    | Test RCD (if present)                 | by activating the test button:            |                |                     |                             |                   |                        | m          | _<br>A |  |  |  |
| 3.2    |                                       | coring device (if present) by activating  | the test butto | n:                  |                             |                   |                        | m          | _      |  |  |  |
| 3.3    |                                       | protection (if present) by activating the |                |                     | Thermal ove                 | erload 🔲          | set to _               |            | Α      |  |  |  |
| 3.4*   |                                       |                                           |                |                     |                             | $\overline{\Box}$ | _                      |            | _      |  |  |  |

### **Inspection and Test Report**

for Kollmorgen Lift Control MPK400/MPK411



| Please Note:      |                           |                                         |                            |                           |                      |
|-------------------|---------------------------|-----------------------------------------|----------------------------|---------------------------|----------------------|
|                   |                           |                                         |                            |                           |                      |
| <b>⚠</b> Disconne | ect! Carry out insulat    | ion resistance tests only with          | the supply disconne        | cted.                     | Test Object          |
| ⚠ For testi       | ng in TNC systems te      | mporarily disconnect the PE-            | N link in the distribut    | ion board.                | BISO                 |
| ⚠ Check the       | battery charge of the t   | est instruments.                        |                            |                           |                      |
| Disconne          | ct the supplies to the do | oor operator(s) and inverter(s). T      | he safety circuit          |                           |                      |
| must be n         | nade (closed). Measure    | circuits with contactor contacts        | in sections.               |                           |                      |
| Select the        | correct test voltage:     | 250V for SELV $\leq$ 50V U <sub>N</sub> | Ins. Res. ≥0,5MΩ           |                           | PE N L               |
|                   |                           | 500V for line voltage ≤ 500V            | Ins. Res. ≥1,0MΩ           |                           |                      |
| Measure i         | nsulation resistance bety | ween each line conductor and the        | circuit protective or eart | hing conductor.           | (MΩ) ( <u>600</u> V) |
| ⚠ Reinstate       | the PE-N link after the i | nsulation resistance test.              | Link has been reins        | tated                     |                      |
|                   | When testing circ         | uits with electronic components         | present, L and N need t    | o be linked! $ ightarrow$ | Test Instruments     |

| 4.1                         | Isolationswiderstand (R-ISO)              | Messung zwischen Außenleitern und PE         | Freischalten | OK = <u>₩</u> | Comments |
|-----------------------------|-------------------------------------------|----------------------------------------------|--------------|---------------|----------|
| 4.1.1 Insulation resistance |                                           | Control system main supply                   | X0: PE-N/L   | 1/L2/L3 🔲     | ΜΩ       |
|                             |                                           | Machine                                      | X0: PE-      | -U/V/W □[     | ΜΩ       |
| 4.1.2                       | Insulation resistance safety circuit      | (safety circuit must be closed for the test) | X1: Pl       | E-7           | ΜΩ       |
| 4.1.3                       | Insulation resistance lighting cct.       | Lighting/sockets: lift car and shaft         | X1: PI       | E-L4/L5 🔲     | ΜΩ       |
|                             |                                           | Lighting/sockets: machine room               | X1: PI       | E-L7/L8 🔲     | ΜΩ       |
| 4.1.4                       | *                                         |                                              |              |               | ΜΩ       |
|                             | * = available for additions               |                                              |              |               | _        |
| 4.2                         | Earth Fault Loop Impedance (ZS)           | Test Line Conductors and PE                  |              | ок = 🗹        | Comments |
|                             | ZS = sum of the supply impedance and fina | al circuit resistance [ZS = Ze + (R1 + R2)]  |              | *4            |          |
| 4.2.1                       | Earth fault loop impedance                | Control system main supply                   | X0: PE-N/L   | 1/L2/L3 □     | Ω        |

| 4.2   | Earth Fault Loop Impedance (ZS)           | Test Line Conductors and PE                  | OK = <b></b> ✓              | Comments |
|-------|-------------------------------------------|----------------------------------------------|-----------------------------|----------|
|       | ZS = sum of the supply impedance and fine | al circuit resistance [ZS = Ze + (R1 + R2)]  | *4_                         |          |
| 4.2.1 | Earth fault loop impedance                | Control system main supply                   | X0: PE-N/L1/L2/L3 □         | Ω        |
|       | (doesn't work between drive - motor)      | Motor (PE minimum csa 10mm²)                 | X0: PE-U/V/W 🔲              | Ω        |
| 4.2.2 | Safety circuit                            | (safety circuit must be closed for the test) | B2A: Z <sub>S</sub> ≤ 21Ω □ | Ω        |
|       |                                           | Expect 0,25 $\Omega$ per landing contact.    |                             |          |
| 4.2.3 | Other circuits                            | Lighting/sockets: lift car and shaft         | with B10A 🔲                 | Ω        |
|       |                                           | Lighting/sockets: machine room               | Z <sub>S</sub> ≤ 4,2Ω       | Ω        |
| 4.2.4 | *                                         |                                              |                             | Ω        |

<sup>\*4 =</sup> Compare the ZS measurements with the maximum permissible values in Table 4.2.6. In case of frequency drives - motor this is not possible, because there is up to 12kHz switching frequency. Make sure the ground connection to the motor is  $<0,1\Omega$ .

| 4.2.5 | Achievement of the Safety Objective in TNS Systems.   | Max. Disconnection Times in TN-Systems according to BS7671:2008 |              |                    |  |  |  |  |  |  |
|-------|-------------------------------------------------------|-----------------------------------------------------------------|--------------|--------------------|--|--|--|--|--|--|
|       | Where $Z_S$ values are too high, the $Z_S \le U0/Ia$  |                                                                 | Nom. Voltage | Disconnection Time |  |  |  |  |  |  |
| A     | maximum disconnection times must be reduced through   | Final circuits (sockets or                                      | ≤230V~       | 0,4s               |  |  |  |  |  |  |
| 4     | additional measures. This can be achieved e.g. with a | fixed appliances) up to 32A                                     | ≤400V~       | 0,2s               |  |  |  |  |  |  |
|       | type B RCD 30mA or additional equipotential bonding.  | Supplies exceeding 32A                                          | ≤400V~       | 5,0s               |  |  |  |  |  |  |
|       |                                                       |                                                                 |              |                    |  |  |  |  |  |  |

Protection potential equalization = potential equalization (old name).

### 4.2.6 Source: BS7671:2008 Earth Fault Loop Impedance (ZS) Tables 41.2, 41.3 and 41.4 for TN Systems

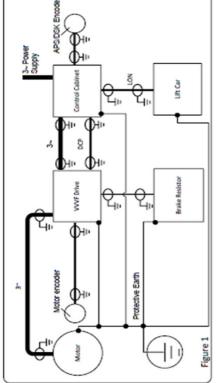
| edanc | e (ZS)                             | for (gC                                          | a) fuse                                                          | s to BS                                                                                    | 88-2.                                                                                                              | 2 and E                                                                                                                                        | 3S 88-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |
|-------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6     | 10                                 | 16                                               | 20                                                               | 25                                                                                         | 32                                                                                                                 | 40                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                                                                                                                                                                                    | 80                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                      | 160                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                  | Α                                                                                                                                                                                                                                                                                                                                                                |
| -     | -                                  | 8,52                                             | 5,11                                                             | 2,7                                                                                        | 1,77                                                                                                               | 1,44                                                                                                                                           | 1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                     | -                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                |
| -     | -                                  | 13,5                                             | 7,42                                                             | 4,18                                                                                       | 2,91                                                                                                               | 2,3                                                                                                                                            | 1,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,35                                                                                                                                                                                                  | 1,04                                                                                                                                                                                                | 0,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,57                                                                                                                                                                                                                                                                        | 0,42                                                                                                                                                                                                                                                                                               | 0,33                                                                                                                                                                                                                                                                                                                     | 0,25                                                                                                                                                                                                                                                                                                                                 | 0,19                                                                                                                                                                                                                                                                                                                                                 | Ω                                                                                                                                                                                                                                                                                                                                                                |
|       |                                    |                                                  |                                                                  |                                                                                            |                                                                                                                    |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |
| edanc | e (ZS)                             | for cire                                         | cuit bre                                                         | akers                                                                                      | with 0                                                                                                             | .4s dis                                                                                                                                        | connec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion ti                                                                                                                                                                                               | me acc                                                                                                                                                                                              | ording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to BS                                                                                                                                                                                                                                                                       | EN 608                                                                                                                                                                                                                                                                                             | 398                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |
| 6     | 10                                 | 16                                               | 20                                                               | 25                                                                                         | 32                                                                                                                 | 40                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                                                                                                                                                                                    | 80                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125                                                                                                                                                                                                                                                                         | 160                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                      | 125                                                                                                                                                                                                                                                                                                                                  | 160                                                                                                                                                                                                                                                                                                                                                  | Α                                                                                                                                                                                                                                                                                                                                                                |
| 7,67  | 4,6                                | 2,87                                             | 2,3                                                              | 1,84                                                                                       | 1,44                                                                                                               | 1,15                                                                                                                                           | 0,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,73                                                                                                                                                                                                  | 0,57                                                                                                                                                                                                | 0,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,37                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                |
| 3,83  | 2,3                                | 1,44                                             | 1,15                                                             | 0,92                                                                                       | 0,72                                                                                                               | 0,57                                                                                                                                           | 0,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,36                                                                                                                                                                                                  | 0,29                                                                                                                                                                                                | 0,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,18                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                |
|       | 6<br>-<br>-<br>pedanc<br>6<br>7,67 | 6 10<br><br><br>pedance (ZS)<br>6 10<br>7,67 4,6 | 6 10 16 8,52 13,5  Declare (ZS) for circle 6 10 16 7,67 4,6 2,87 | 6 10 16 20 8,52 5,11 13,5 7,42  Declare (ZS) for circuit bree 6 10 16 20 7,67 4,6 2,87 2,3 | 6 10 16 20 25 8,52 5,11 2,7 13,5 7,42 4,18  Declare (ZS) for circuit breakers 6 10 16 20 25 7,67 4,6 2,87 2,3 1,84 | 6 10 16 20 25 32 8,52 5,11 2,7 1,77 13,5 7,42 4,18 2,91  Declare (ZS) for circuit breakers with 0 6 10 16 20 25 32 7,67 4,6 2,87 2,3 1,84 1,44 | 6 10 16 20 25 32 40 8,52 5,11 2,7 1,77 1,44 13,5 7,42 4,18 2,91 2,3  Declare (ZS) for circuit breakers with 0.4s discrete for the control of the con | 6 10 16 20 25 32 40 50 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84  pedance (ZS) for circuit breakers with 0.4s disconnected 10 16 20 25 32 40 50 7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 | 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 redance (ZS) for circuit breakers with 0.4s disconnection times 6 10 16 20 25 32 40 50 63 7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 | 6 10 16 20 25 32 40 50 63 80 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04  pedance (ZS) for circuit breakers with 0.4s disconnection time according to the control of th | 6 10 16 20 25 32 40 50 63 80 100 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82  Declance (ZS) for circuit breakers with 0.4s disconnection time according 6 10 16 20 25 32 40 50 63 80 100  7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 | 6 10 16 20 25 32 40 50 63 80 100 125 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82 0,57  Declance (ZS) for circuit breakers with 0.4s disconnection time according to BS 6 10 16 20 25 32 40 50 63 80 100 125 7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 0,37 | 6 10 16 20 25 32 40 50 63 80 100 125 100 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82 0,57 0,42  Declance (ZS) for circuit breakers with 0.4s disconnection time according to BS EN 608 6 10 16 20 25 32 40 50 63 80 100 125 160 7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 0,37 - | 6 10 16 20 25 32 40 50 63 80 100 125 100 125 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82 0,57 0,42 0,33  pedance (ZS) for circuit breakers with 0.4s disconnection time according to BS EN 60898 6 10 16 20 25 32 40 50 63 80 100 125 160 200 7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 0,37 | 6 10 16 20 25 32 40 50 63 80 100 125 100 125 160 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82 0,57 0,42 0,33 0,25  Declance (ZS) for circuit breakers with 0.4s disconnection time according to BS EN 60898  6 10 16 20 25 32 40 50 63 80 100 125 160 200 125  7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 0,37 | 6 10 16 20 25 32 40 50 63 80 100 125 100 125 160 200 8,52 5,11 2,7 1,77 1,44 1,04 13,5 7,42 4,18 2,91 2,3 1,84 1,35 1,04 0,82 0,57 0,42 0,33 0,25 0,19  redance (ZS) for circuit breakers with 0.4s disconnection time according to BS EN 60898  6 10 16 20 25 32 40 50 63 80 100 125 160 200 125 160  7,67 4,6 2,87 2,3 1,84 1,44 1,15 0,92 0,73 0,57 0,46 0,37 |

Most of the test instruments will show the tipp current automaticly during the loop imdedance margement. With this information the disconnection time Can also be determind.

## **Inspection and Test Report**

for Kollmorgen Lift Control MPK400/MPK411




| 4.3                                                                                                        | 4.3 Check Automatic Disconnection of the Supply by way of Earth Fault Loop Impedance and Trip Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------|----------------|---------|-----------|-----------|--------------------------------------------------|---------|--------|-----------------|----------|---------|--------------|----------|---------------|
| Maximum Earth Fault Loop Impedance (ZS) for circuit breakers with disconnection time ≤ 5 s with U0 of 230V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
| Nor                                                                                                        | ninal circuit breakers [A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ] 2         | 4         | 6        | 10             | 16      | 20        | 25        | 32                                               | 35      | 40     | 50              | 63       | Α       | zs =         | (Uo -    | U)/I-Last     |
| Cha                                                                                                        | rakteristik B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,67        | 4,6       | 2,87     | 2,3            | 1,84    | 1,44      | 1,15      | 0,92                                             | 0,73    | 0,57   | 0,46            | 0,37     | Ω       | ZS(n         | n) ≤ 2,  | /3 x (Uo/la)  |
| Charakteristik C 3,83 2,3 1,44 1,15 0,92 0,72 0,57 0,46 0,36 0,29 0,23 0,18 Ω                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
| wheth<br>ZS = (2                                                                                           | Example: a final circuit (pit socket) has a no-load voltage of 233V. After connecting a 500W lamp the voltage reduces to 229V with a current of 2.2A. Check whether a B10A MCB can be used. ITrip = $5 \times 10A = 50A$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82\Omega$ $S = (233V - 229V) / 2,2A = 1,82$ |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
| 4.4                                                                                                        | Earth Continuity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Guide: E    | arthin    | g Cond   | luctor         | <1Ω, N  | Main Pr   | otectiv   | e Bond                                           | ding Co | onduct | tors < 0        | ,1Ω)     | i.O.=   | <b>Ø</b>     | Co       | omments       |
| 4.4.1                                                                                                      | Controller PE to motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |          |                |         |           |           | (                                                | PE mi   | inimu  | ım csa          | a = 10   | mm²     |              |          |               |
|                                                                                                            | Check connections wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h all fol   | lowing    | g poin   | ts 4.3.        | Χ       |           |           |                                                  |         | Che    | ck for          | cont     | inuity  | ,            |          |               |
| 4.4.2                                                                                                      | Controller PE to Protec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion Cl     | ass 1 e   | quipn    | nent           |         |           | Brak      | e coil                                           | , force | ed co  | oling,          | lighti   | ing,    | . 🔲          |          |               |
|                                                                                                            | (Protection Class1 = protecti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ve condu    | ictor red | quired f | or expo        | sed-co  | nductive  | e-parts)  |                                                  |         |        |                 |          |         |              |          |               |
| 4.4.3                                                                                                      | Controller PE to car to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | conne       | ection    | box      |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            | Measure resistance be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tween       | car ga    | te and   | landi          | ng do   | or frar   | ne wit    | h car d                                          | doors   | open.  |                 |          |         |              |          |               |
| 4.4.4                                                                                                      | Car top socket PE to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or ope      | rator     |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            | Car top socket PE to ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r           |           |          |                | С       | heck f    | or con    | tinuity                                          | /       |        |                 |          |         |              |          |               |
| 4.4.5                                                                                                      | Car top socket PE to ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r top c     | ontrol    | (Prote   | ection         | Class   | 1)        |           |                                                  |         |        |                 |          |         |              |          |               |
| 4.4.6                                                                                                      | EMC compliant installa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ition of    | moto      | r and    | data c         | ables,  | , i.e. se | gregat    | ion.                                             |         |        |                 |          |         |              | Re       | quirement in  |
|                                                                                                            | Adequate earthing of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |          |                |         |           |           |                                                  | menda   | ations | using           | specia   | al clan | nps.         | inve     | rter systems! |
|                                                                                                            | Minimum cross sectional are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea (csa) fo | or main   | protect  | ive bon        | ding co | nducto    | rs = 10m  | ım²                                              |         |        |                 |          |         |              |          |               |
| 5                                                                                                          | Voltage Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :s          |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            | In an arian 14 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |           | 71       |                |         |           |           |                                                  |         |        |                 | 1 v4.    | 200     |              |          | 1/0.0         |
| 5.1                                                                                                        | Incoming L1 - L2<br>Incoming L1 - L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | VAC C     |          | ming<br>trol X |         |           |           | <del>                                     </del> | VAC     |        | Contro<br>Group |          |         |              |          | VDC           |
| 5.3                                                                                                        | Incoming L1 - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | VAC [     | _        |                |         | : L5 -1   | NA.       | $\vdash$                                         | VAC     |        | Car X           |          |         |              |          | VDC           |
| 5.4                                                                                                        | Incoming L2 - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | VAC [     | _        |                |         | (1: L7    |           |                                                  | VAC     |        | •               |          |         | _            |          | v             |
| ==                                                                                                         | Chark the Voltage dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _           | - N       | //00     | rovim          | 40      | OV-N-     | t 4% S    | 161/1                                            |         |        | a pprox         | imete    | 230/-   | Nat A        | % < 0 °  | 2//\          |
| 5.5                                                                                                        | Check the Voltage dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |           |          |                |         | OV-IVE    | L 4/0 S   | LOVI                                             |         |        | e pprox         | imete    | 2504-   | NEL 4        | 70 2 3,1 |               |
| 6                                                                                                          | Phase Rotation Test of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | _         |          |                |         |           |           |                                                  |         |        |                 |          | OK-     | · 🗹          | C        | omments       |
|                                                                                                            | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |           |          | iuiii St       | 4PPIY   |           |           |                                                  |         |        |                 |          | OK-     |              |          |               |
| 6.1                                                                                                        | Clockwise phase rotati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on pres     | ent       |          |                |         |           |           |                                                  |         |        |                 |          |         | Ш            |          |               |
| 7                                                                                                          | Functional Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          | OK:     | = i <b>⊘</b> | Co       | omments       |
| 7.1                                                                                                        | Machine, locks and saf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oty dos     | sivos b   | ave be   | on to          | ctod f  | unctio    | nally     |                                                  |         |        |                 |          |         |              |          |               |
| 7.2                                                                                                        | The safety requiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |           |          |                | steu i  | unctio    | many.     |                                                  |         |        |                 |          |         | 뷞            |          |               |
| 7.2*                                                                                                       | The salety requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L3 Have     | been      | TOTION   | reu.           |         |           |           |                                                  |         |        |                 |          |         | 퓜            |          |               |
| 7.5                                                                                                        | * = available for additions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                | _       |           |           |                                                  |         |        |                 |          |         |              |          |               |
| Com                                                                                                        | ments*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |          |                | D       | etails    | of test   | instru                                           | ıment   | s used | d (and          | serial   | numb    | ers)         |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            | *All detected faults or missir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng compo    | onents n  | nust be  | correct        | ed to e | ensure th | hat the o | control                                          | system  | compli | es with         | the requ | uireme  | nts.         |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |          |                |         |           |           |                                                  |         |        |                 |          |         |              |          |               |




Date Tester signature

**EMC Information / Recommendations for Inverter Controlled Systems** 

# Electromagnetic shielding and EMC-compatible wireing





The earthing of the shielding and the quality of the connection to the shielding affect the over all-effect of the electromagnetic shielding!

 Connect the shielding to the Earth Potential as shown in Figure 1 keeping the cables as short as possible.

 Segregate high voltage and high current cables (Motor cable, Brake Resistor cable) from signal cables (Encoder cable, Bus cable) as far as possible >10 cm distance.  Cross disturbed cables (Motor cable) in a 90° angle with undisturbed cables (Signal Cables).

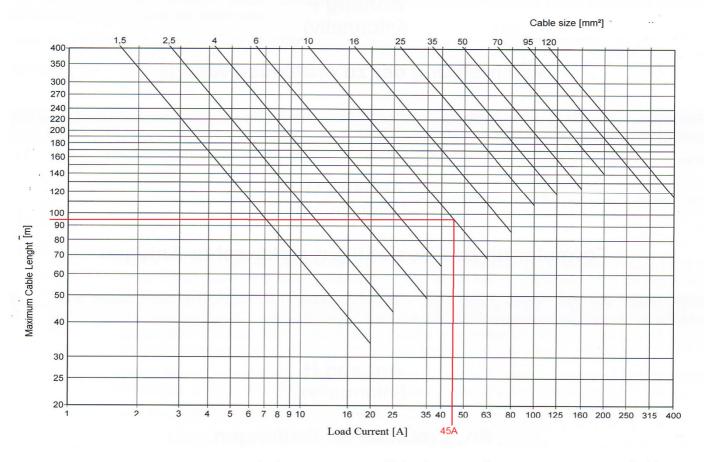
 Connect the EMC protection decives shown in the electrical drawings to disturbing sources such as (Contactors, Brakes, Door operators etc.) 5. Do <u>not</u> mount the brake resistor to the housing of the V/V/F inverter or the control cabinet.

6. Connect the shielding with maximal surface to Ground Potential (see Figure 2, 3 and 4)

B. Do not conduct potential equalisation currents via the shielding. Separate potential equalisation cables are mandatory inbetween the different installation.

Ensure that the slope resistance of the shielding is not higher than 0.3 Ohm

© KOLLMORGEN Steuerungstechnik GmbH Köln / 29. Januar 2014 / Dokument3




### Appendix D - Diagramme for Determining Voltage Drop

Source: DIN VDE0100Part600

Use the cable cross sectional area in conjunction with cable length, conductor temperature and the design current to check whether the applicable voltage drop is acceptable.

The diagramme shows the maximum permissible cable length, based on a 400V 3-phase supply and 55°C conductor temperature, and the resulting 4% voltage drop in relation to the design current.



Note: The diagramme is not suitable for determining the current-carrying capacity of cables.

The indicated values are applicable to 3-phase 400V AC supplies. For single phase 230V AC supplies, divide the cable length by 2.

Example: The design current of a consumer is 45A and the supply length from the substation to the machine room is 70m. A 5x10mm<sup>2</sup> cable was used for the installation, protected with 50A.

Question: Is the voltage drop acceptable? ==> Yes, according to the diagramme it is suitable up to 95m.

To check the result, calculate the voltage drop:

= √3 x l x l-Nenn x cos/ Kappa x A

= 1,73 x 70m x 45A x 0,9 / 56 x10mm<sup>2</sup> = 8,82V